DIFFUSION PROBLEMS IN THE LINEAR THEORY
OF GASDYNAMIC AND CHEMICAL LASERS
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The system of linear equations of multicomponent convective diffusion is reduced consistently
with allowance for the features of the relevant laser devices. A criterion for the realization
of a purely diffusion regime is established. A method of diagonalization of the diffusion co-
efficient matrix is given; it reduces the multicomponent problem to a series of one-compo-
nent problems. The superposition of relaxation modes is discussed. A diffusion type hydro-
fluoric laser illustrates the influence of angular asymmetry of the particles on the output
power of the radiation,

1. I the kinetic processes that determine the parameters of gasdynamic and chemical lasers (see
the reviews [1-3]) are to be established precisely, it is frequently necessary to take into account the diffu-
sion characteristics of a nonequilibrium flux. A considerable number of laser systems have been devel-
oped in which the diffusion transport of atoms and molecules is the dominant kinetic process [4, 5].

By using simplified estimates of the "diffusion contributions® to the relaxation times and also other
parameters that directly determine the gain, power, and efficiency of lasers, one can seriously distort the
results of calculations [6] or even arrive at a qualitative contradiction to experimental data [7], In this
paper, I consider linear boundary-value diffusion problems whose solutions must be taken into account.
These problems admit either a direct analytic or simple numerical solution, so that the results can be used
to improve the model theories of lasers like those in [8-10].

2. In the framework of the phenomonolegical description of vibrational relaxation of the levels, com-
bined in "blocks®, of the basic laser components (for example, in the Landau—Teller approximation [8] and
the Courant —Friedrichs—Levi stability conditions [11]) one can proceed from the following system of
linear equations of convective diffusion:
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Here v is the vector of the mean velocity of the flux; «j are dissipative coefficients; and Djj are
diffusion coefficients which, to a good approximation, can be regarded as scalar quantities related to one
another by the Onsager relations.

We find a criterion that enables one to distinguish a purely diffusion regime of operation of the laser.
It ! I and /, are the characteristic longitudinal and transverse dimensions of the laser channel (or rather
that part of it in which the diffusion process is important), the criterion can be formulated as

t. > 1044, to= ll[ v, tg= l_Lz/<Dik> (2'2)

where t, and tg are the times of convective and diffusion passage of a particle. Infroducing the Schmidt
and Reynolds numbers for the flux, Sc and Re respectively, we can rewrite (2.2) as

Sc Re = 0.1 Iy/ly 2.3
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The opposite inequality corresponds to the fast-flow regime [12]. Neither this nor the intermediate
case [13] will be considered.

Apart from the neglect of the second term, on the basis of (2.3), a further formal simplificationof (2.1)
can be achieved by the change of variables

m; = nie“it (2'4)
Then (2.1) is replaced by
om, »
—6'[-1' = Z Dik*ngk (2'5)
k=1
Dy* = Dy 40! (2.6)

The literature data (see, for example, [3, 6, 10]) enable one to make a comparative estimate of the
quantities tq and the differences «j—oj in the exponential in (2.6). It is found that a large number of
practically interesting cases are characterized by

| — o | <257t (&.7)
i.e., to a fair degree of accuracy one can ignore the difference between the dissipative coefficients in the
multicomponent problem and proceed from the system of equations
P
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3. Inthe thermodynamics of irreversible processes in the solution of problems described by equa-~
tions of the type (2.8), one attempts, using different approximations, to "decouple® the system or ignore
the nondiagonal terms of the matrix Djk of diffusion coefficients. As a rule, such procedures are hard to
justify and their use introduces uncontrollable errors into the calculations [14, 15].

Note that (2.8) is transformed into a system of p independent equations by the diagonalization of D.
We consider an auxilliary nonsingular square matrix g with elements g;. whose rank is the same as that of
D. Multiplying the equations of the system (2.8) by the corresponding elements of 8ij» summing over i,
and also replacing the subscripts i by k in terms with single summation, we find
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We introduce the notation

D P
1
G;= 2 gy, Hj= "gk—_ 2 2 Dy (3:2)
7 i=1

=1

after which the system (3.1) can be written in the form

6G1/0t = HjV2 Gj - OLGJ', j= 1,2,. v ey P (3_3)
where the coupled terms are absent. The elements of the diagonalized matrix, HJ-, can be found from the
condition

‘ det (Dih bl H(Sik) =0 (3.4)
The solution of the system of equations (2.8) is
P
n = ) g6 (3.5)
=1
where g1 is the inverse matrix.

Returning to the more complicated case, when (2.7) does not hold, we note that an investigation was
made of the convergence of the iterative scheme in accordance with which coefficients aj of the form
k4

1
o = T, 2 Oy T (3.6)

k=1

are introduced in (3.3) and in the first approximation the ny are found using (3.5). As a rule, more than two
iterations are not required.
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4. After reduction of the multicomponent diffusion problem, we arrive at an equation of the form
dnjot = DVin — an “.1)

where the subscript i has been omitted. Specifying a definite geometry of the system and solving (4.1), one
can obtain the complete relaxation matrix

Young = Tmng 0Xp (— t/ Tmng)s Z Tmng =1 (4-2)
m,n, 4
Suppose, for example, that the diffusion occurs in a cylindrical cavity, L and R being the length and
radius of the cylinder. Separating the four arguments (r, ¢, z, t) of the function n in (4.1) by the Fourier
method, and making some calculations [16], we find

@

n(r, @, z, t)= 2 Z Z Cran” [K4 cos (g9) + M, sin(q9)] J, (p*mqr) cos (v,z)exp {—[D (pqu + v+ alt} (4.3)

m n=1 g¢==0

Here Kg', Mq', Cmn! are constants to be determined from the initial and boundary conditions; v, =
(2n—1) 7 L! and P mq are the roots of the transcendental equation

Jq (pmeB) =0 4.4)

Jq is the symbol of a Bessel function, and in the summation over m one need take into account only the
positive roots of Eq. (4.4). As can be seen from (4.3), the matrix elements in the expression (4.2) are deter-
mined by

Tmng = [D (mg® + %) +- @] 4.5)

In the case of spherical geometry, the solution can be written in the form

n(r, 8, @ 1) =2 2 2 Crn"Pa (c0s 0) [K" cos (gg) + Mo" Sin (¢9)] (ranT) ™ Jnsss, (Wmn?) €XP {— [Dppn® + 0]t} (4.6)

m n=0qg=0

where Pn(q) (cos 9) are associated Legendre functions, and the exponential dependence of the elements of
the relaxation matrix Y is determined by the term

Tn = [‘DI"'mﬂ2 4ot “ .7
which contain only two indices instead of three (degeneracy).

We mention here a formal similarity with the problem of longitudinal relaxation of optically oriented
atoms in a cell with inert or organic inhibitor [16-18]. As in the problem, in this case one can expect
appreciable changes of T mng and ymnq in (4.2) because of the absence of symmetry in the distribution of
the diffusing particles with respect to the angle ¢. This must bave an appreciable effect on the output
characteristics of the laser — the integral gain, the laser power, mode structure, etc. Such an effect has
been observed: in [19] the choice of a particular asymmetric position of a hydrogen injector in a subsonic
HF electric-discharge mixing laser made it possible to improve the output parameters of the laser appre-
ciably. Similar cases can also be found in the investigations of laser systems with chemical pumping
(see [3]).

From the point of view of the solution of (4.3), asymmetry in the angular distribution of the diffusing
particles amounts to retention of the summation over q and the need to find the roots ppq in (4.4) for dif-
ferent values of q. To make the calculations less cumbersome, it is convenient to use the generalized
coordinates x , introduced in the study of multidimensional problems of the theory of neutron transfer [20].
The transition to a symmetric distribution of the particles with respect to ¢ then corresponds to degene-
racy of Xy in the Cartesian coordinate x.

5. We illustrate the use of the general expressions in a definite example. Let us calculate the power
W of the radiation leaving an HF flow diffusion system operating under laser conditions. Let I; be the
intensity of the radiation entering the laser, In the z direction we assume that the beam has dimensions
unity, and along the x (along the flux velocity) and y (along the segment bounded by the flow axis and the
nflame front® [4]) axes we integrate in accordance with the formula

W=Io§[exp(1§oudy)——1]dz (5.1)
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Y In the approximation of a laminar front [21]
wie
/ yo= AV Dzjv (5.2)

where A is a constant of order unity, v is the flux velocity,

® = yha N, ((HF*] — [HF°]) (5.3)
Q v is the local gain (the notation is standard [22] and therefore not

explained) for which, following the model of [10], one can readily

write down an ordinary differential equation. Theimportant param-

0 1.5 ¥y eters in this equation are xI,, and also Qy and Q)y, which are

Fig. 1 the products of the concentration of H, molecules and the concen-
g tration M of the particles and the reaction rates QH and Qpp re-

spectively:
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H,+F 2, Hp* +H (5.4)
[}
HF* + M —% HFP+M (5.5)
These three quantities determine two dimensionaless ratios:

M=0Qu/On hs=2¢L/Un (5.6)
which are convenient in the interpretation of different particular solutions of the problem.

As a result of solution of the equation for 4, substitution of this solution into (5.1), and integration
with allowance for w € 0.5 we obtain

W= VTR V& —Daw (VE)] —2[VE -2 ] 2 0] 6

The symbol Daw denotes the Dawson integral, which is tabulated and can be expressed in terms of the
error function of imaginary argument:

Daw (z) = (V 7/2i) exp (— 2%) @ (iz)

The variable £ is related to the generalized coordinate x,, which takes into account the azimuthal
asymmetry of the flux of diffusing H, molecules as follows:

o= +h) 0o =Qmv™ (1 +hy)xg

(5.8)
The remaining quantities in (5.7) are
Ae M _ be(2—b)
b1= 1—’—7\/‘2, b?‘—l_i_;\'la ay = e —1 ! (5.9)
ay == 1—‘:—;’%’:—[)1‘ , Q3= b]_ — '1

The characteristic result of calculation in accordance with (5.7) is shown in Fig. 1. Along the axes
we have plotted £, and W/C (C is constant) and for simplicity we have taken the limiting case A — «;
physically it means that the reaction of formation of active molecules (5.4) is completed within the ®*flame
front." Here, A, is a variable parameter and, for curves 1 and 2, takes the values 1 and 4. These two
curves correspond to the case when there is no angular asymmetry in the distribution of the diffusing
particles, i.e., Xp =X for them. For curve 3, as for curve 1, A, =1, but the assumption of a symmetric dis-
tribution of the particles with respect to ¢ has been lifted and it has been assumed that the injector of H,
molecules is shifted with respect to the axis of the system in the radial direction through a radial distance
R/4. Accordingly, the scale along the abscissa has been deformed, i.e., here Xgp #X

It is evident from a comparison of the curves that the output power of the laser can be appreciably
improved by the superposition of the relaxation modes when the reacting molecules are injected asym-
metrically. This method of optimizing diffusion-type lasers, which is formally equivalent to increasing
the gain for transitions of the P-branch of induced electrodipole radiation, evidently warrants further study.

Ithank R. L Soloukhin for discussions.
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