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The s y s t e m  of l inea r  equations of  mult icomponent  convect ive diffusion is reduced cons is ten t ly  
with al lowance for  the f ea tu res  of the re levant  l a s e r  devices .  A c r i t e r i on  for  the rea l iza t ion  
of a pure ly  diffusion r eg i m e  is establ ished.  A method of diagonalizat ion of the diffusion c o -  
efficient m a t r i x  is given; it r educes  the mult icomponent  p rob lem to a s e r i e s  of o n e - c o m p o -  
nent p rob lems .  The superposi t ion  of re laxat ion modes is d iscussed.  A diffusion type hydro-  
f luoric  l a s e r  i l lus t ra tes  the influence of angular  a s y m m e t r y  of the pa r t i c l e s  on the output 
power  of the radiat ion.  

1. If the kinetic p r o c e s s e s  that de te rmine  the p a r a m e t e r s  of gasdynamic  and chemica l  l a s e r s  (see 
the rev iews  [1-3]) a r e  to be es tabl i shed p rec i se ly ,  it is f requent ly  n e c e s s a r y  to take into account the diffu- 
sion c h a r a c t e r i s t i c s  of  a nonequil ibrium flux. A cons iderable  number  of l a s e r  s y s t e m s  have been devel-  
oped in which the diffusion t r anspo r t  of a toms  and molecu les  is the dominant kinetic p r o c e s s  [4, 5]. 

By using s impl i f ied  e s t ima te s  of the ~diffusion contr ibut ions  m to the re laxat ion  t imes  and a lso  other  
p a r a m e t e r s  that  d i rec t ly  de te rmine  the gain, power,  and eff iciency of l a s e r s ,  one can  se r ious ly  d is tor t  the 
r e s u l t s  of ca lcula t ions  [6] o r  even a r r i v e  at a quali tat ive contradic t ion to exper imenta l  data [7], In this  
paper ,  I cons ider  l inear  boundary-va lue  diffusion p rob l ems  whose solutions mus t  be taken into account.  
These  p rob l ems  admit  e i ther  a d i rec t  analytic o r  s imple  numer ica l  solution, so  that  the r e su l t s  can be used 
to improve  the model  t heo r i e s  of l a s e r s  l ike those in [8-10]. 

2. In the f r a m e w o r k  of the phenomonological  descr ip t ion  of v ibra t iona l  re laxat ion  of the levels ,  c o m -  
bined in Ublocksm, of the basic l a s e r  components  (for example ,  in the Landau- -Te l l e r  approximat ion  [8] and 
the C o u r a n t - F r i e d r i c h s - L e v i  s tabi l i ty  conditions [11]) one can p roceed  f r o m  the following s y s t e m  of 
l inear  equations of  convect ive  diffusion: 

On i p v (2.1) 
Ot zc v V n i - -  ~ '  D~t~ V~ n~ + aini = O' v -~  ~ nivl. 

k = l  i=l 

Here  v is the v e c t o r  of the mean  ve loc i ty  of the flux; a i  a r e  diss ipat ive  coeff ic ients ;  and Dik a r e  
diffusion coeff ic ients  which, to a good approximat ion,  can  be r ega rded  as  s ca l a r  quant i t ies  r e la ted  to one 
another  by the Onsager  re la t ions .  

We find a c r i t e r i on  that  enables  one to dist inguish apu re ly  diffusion r eg ime  o fope ra t i ono f  the l a s e r .  
ff I [ and l• a r e  the c h a r a c t e r i s t i c  longitudinal and t r a n s v e r s e  d imensions  of the l a s e r  channel (or r a t h e r  
that  i~art of it in which the diffusion p r o c e s s  is important) ,  the c r i t e r i o n  can  be fo rmula ted  as  

t o .  IOta, t c = l ~ / v ,  ta=l_L~/(Di~> (2.2) 

where  t c and t d a r e  the t i m e s  of convect ive  and diffusion pas sage  of a par t ic le .  Introducing the Schmidt 
and Reynolds numbers  for  the flux, Sc and Re re spec t ive ly ,  we can r ewr i t e  (2.2) as  

Sc Re ~ 0.t lll/l_t (2.3) 
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The opposi te  inequality c o r r e s p o n d s  to the  f a s t - f low r eg ime  [12]. Neither  th is  nor  the in te rmedia te  
ca se  [13] will be cons idered .  

Apar t  f r o m  the neglect  of the second t e r m ,  on the bas i s  of (2.3), a fu r the r  f o r m a l  s impl i f ica t ion of (2.1) 
can  be achieved by  the change of v a r i a b l e s  

mi = n~e ~it (2.4) 

Then (2.1) is rep laced  by 

Om~ P 
Ot = ~ Di~ *V2m~ (2.5) 

D~k, = D~e(~i-%) t (2.6) 

The l i t e r a tu r e  data (see, for  example ,  [3, 6, 10]) enable  one to make a c o m p a r a t i v e  e s t ima te  of the 
quant i t ies  t d and the d i f fe rences  ~ i - a k  in the exponential  in (2.6). It is found that  a l a rge  number  of 
p rac t i ca l ly  in te res t ing  c a s e s  a r e  c h a r a c t e r i z e d  by 

l a~ - -  % [ <  td -I (2.7) 

i.eo, to a fa i r  degree  of a ccu racy  one can  ignore the d i f ference  between the d iss ipat ive  coeff ic ients  in the 
mult icomponent  p rob lem and p roceed  f r o m  the sy s t em of equations 

On~ v (2.8) 
0-'7- = ~ '  Di~ V 2 n~ -- ani 

k=l 

3. In the t h e r m o d y n a m i c s  of i r r e v e r s i b l e  p r o c e s s e s  in the solution of p r o b l e m s  desc r ibed  by equa-  
t ions of the type (2.8), one a t t empts ,  using different  approximat ions ,  to Wdecouple" the sy s t em or  ignore 
the nondiagonal t e r m s  of the m a t r i x  Dik of diffusion coeff ic ients .  As a rule ,  such p r o c e d u r e s  a r e  hard  to 
just i fy and the i r  use  in t roduces  uncontrol lable  e r r o r s  into the ca lcu la t ions  [14, 15]. 

Note that  (2.8) is t r a n s f o r m e d  into a s y s t e m  of p independent equations by the diagonal izat ion of D. 
We cons ider  an auxi l l ia ry  nonsingular  square  m a t r i x  g with e lements  gik whose rank  is the same  as  that  of 
D. Multiplying the equations of the s y s t e m  (2.8) by the co r re spond ing  e l emen t s  of gij, summing  over  i, 
and a lso  rep lac ing  the subsc r ip t s  i by k in t e r m s  with single summation,  we find 

P P P P 

0 (3.1) O"-'F ~ gujn~ = div grad ~ n~ ~ g~jD~ - -  ~ ~ g~jn~, ] = i ,  2 . . . . .  p 

We introduce the notation 

P P 

Gj = ~, g~n~, Hj ---- 1_~ ~, g~jD,~ (3 .2)  

~=i g~J {=i 

a f t e r  which the s y s t e m  (3.1) can  be wri t ten in the f o r m  

OGs/Ot = HiV 2 G~ - -  ccGj, ] = 1,2 . . . . .  p (3.3) 

where  the coupled t e r m s  a re  absent .  The e l emen t s  of the diagonal ized mat r ix ,  Hj, can  be found f r o m  the 
condition 

det (Dit, - -  Hbth) = 0 

The solution of the s y s t e m  of equations (2.8) is 
P 

where  g-1 is the inve r se  mat r ix .  

(3.4) 

(3.5) 

Returning to the m o r e  compl ica ted  case ,  when (2.7) does not hold, we note that  an invest igat ion was 
made of the convergence  of the l te ra t ive  scheme  in accordance  with which coeff ic ients  ozj of the f o r m  

1 
aj = --C- ~'  a~g~jn~ (3.6) 

3 k~l 

a r e  introduced in (3.3) and in the f i r s t  approx imat ion  the n k a r e  found using (3.5). As a rule ,  m o r e  than two 
i te ra t ions  a r e  not required.  
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4. Af ter  reduction of the mult icomponent  diffusion problem,  we a r r i v e  at an equation of the fo rm 

~n/Ot = DV~n -- czn (4.1) 

where  the subscr ip t  i has been omitted.  Specifying a definite geome t ry  of the s y s t e m  and solving (4.1), one 
can obtain the comple te  re laxa t ion  m a t r i x  

Y,n~q = Tm,q exp (-- t / ~,~q), ~, 7~q = t (4.2) 

Suppose, for  example,  that the diffusion occurs  in a cyl indr ica l  cavi ty ,  L and R being the length and 
radius  of the cyl inder .  Separat ing the four a rguments  (r, r  z, t) of the function n in (4.1) by the Fou r i e r  
method, and making some  calcula t ions  [16], we find 

n ( r , ~ , z , t ) ~ ,  ~,C,,,~'[Kq'cos(q~)+Mq'sin(q~)] Jq(bt,~qr)cos(~,~z)exp{--[D(~mq~-{-~)+a]t} (4.3) 

He re  Kq' ,  Mq t, Cmn t a re  constants  to be de te rmined  f r o m  the initial and boundary eonditions~ Vn= 
(2n-1)  ~r L -~ and/~ mq a re  the roo ts  of the t ranscendenta l  equation 

]q (~,~qR) ~ 0 (4.4) 

Jq is the symbol  of a Besse l  function, and in the summat ion  over  m one need take into account only the 
posi t ive  roots  of Eq. (4.4). As can  be seen f rom (4.3), the ma t r i x  e l emen t s  in the express ion  (4.2) a r e  d e t e r -  
mined by 

Tm~q = [D (~mq ~ -~ .;,~) -~ a] -1 (4.5) 

In the ca se  of spher ica l  geomet ry ,  the solution can be wri t ten in the fo rm 

c~ co 

n(r, O, e?, t)-~ ~ ~, ~-J C€ + ~q~ sin(q~p)](~m~r)-~/~`/~(~tm~r)exp{-[~l~"`~ +a~t} (4.6) 
m n ~ O  q==O 

where Pn (q) (cos 0) a r e  a s soc ia ted  Legendre  functions, and the exponential dependence of the e lements  of 
the re laxat ion ma t r ix  Y is de te rmined  by the t e r m  

T,~n = [D~m~ ~ -~ a] -1 (4.7) 

which contain only two indices instead of th ree  (degeneracy).  

We mention here  a f o rm a l  s im i l a r i t y  with the p rob lem of longitudinal re laxa t ion  of opt ical ly  or iented  
a toms  in a ceU with iner t  or  organic inhibitor [16-18]. As in the p rob lem,  in this  ca se  one can  expect  
apprec iable  changes  of Tmn q and ~'mnq in (4.2) because  of the absence  of s y m m e t r y  in the dis t r ibut ion of 
the diffusing pa r t i c l e s  with r e spec t  to the angle q~. This  must  have an apprec iab le  effect  on the output 
c h a r a c t e r i s t i c s  of the l a s e r  - the in tegral  gain, the l a s e r  power,  mode s t ruc tu re ,  e tc .  Such an effect  has 
been observed:  in [19] the choice of a pa r t i cu l a r  a s y m m e t r i c  posit ion of a hydrogen in jec tor  in a subsonic 
I IF e l e c t r i c - d i s c h a r g e  mixing l a s e r  made it poss ib le  to improve  the output p a r a m e t e r s  of the l a s e r  a p p r e -  
ciably.  S imi lar  c a s e s  can  a lso  be found in the invest igat ions of l a s e r  s y s t e m s  with chemica l  pumping 
(see [3]). 

F r o m  the point of v iew of the solution of (4.3), a s y m m e t r y  in the angular  dis t r ibut ion of the diffusing 
pa r t i c l e s  amounts  to re tent ion of the summat ion  over  q and the need to find the roo ts  /z mq in (4.4) for  d i f -  
ferent  va lues  of q. To make the ca lcula t ions  l e s s  c u m b e r s o m e ,  it is convenient  to use the genera l ized  
coordina tes  x ~  introduced in the study of mul t id imensional  p rob l ems  of the theory  of neutron t r a n s f e r  [20]. 
The t rans i t ion  to a s y m m e t r i c  dis t r ibut ion of the pa r t i c l e s  with r e spec t  to ~ then c o r r e s p o n d s  to degene-  
r a c y  of x~0 in the Car te s i an  coordinate  x. 

5. We i l lus t ra te  the use  of the genera l  expres s ions  in a definite example .  Let  us ca lcula te  the power  
W of the radia t ion leaving an I,IF flow diffusion sy s t em opera t ing  under  l a s e r  conditions.  Let  I 0 be the 
intensity of the radia t ion en te r ing  the l a se r .  In the z d i rec t ion we a s sume  that the beam has d imensions  
unity, and along the x (along the flux velocity) and y (along the segment  bounded by the flow axis  and the 
~flame front  m [4]) axes  we integrate  in accordance  with the fo rmula  

x Yo 
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In the approximation of a laminar  front [21] 

Yo --- A ~ f ' D x / v  (5.2) 

where A is a constant  of o rder  unity, v is the flux velocity,  

• ---- xh~0 No ([HF*] -- [HF~ (5.3) 

~t is the local gain (the notation is standard [22] and therefore  not 
explained) for  which, following the model 6f [10], one can readi ly 
write down an ord inary  differential equation. The important  pa r am-  
e te r s  in this equation are  • and also QH and QM, which are  
the products  of the concentra t ion of H 2 molecules  and the concen-  
t ra t ion  M of the par t ic les  and the react ion ra tes  QH and QM re -  
spectively: 

II~ -~ F ~ - - ,  HF* -~ I-I (5.4) 

HF* ~- M -~-~-, HF ~ ~- M (5.5) 

These three quantities determine two dimensioualess  rat ios:  

kz---- Q H / Q M ,  x~ = 2~Io /Q,~  (5.6) 

which are  convenient in the interpretat ion of different par t icu lar  solutions of the problem. 

As a resul t  of solution of the equation for ~ ,  substitution of this solution into (5.1), and integration 
with allowance for  ~ ~ 0.5 we obtain 

The symbol Daw denotes the Dawson integral,  which is tabulated and can be expressed  in t e rms  of the 
e r r o r  function of imaginary  argument:  

Daw (x) _~. (~f~/2i) exp (-- x ~) ffP (ix) 

The var iable  ~0 is related to the general ized coordinate x~0 , which takes into account the azimuthal  
a s y m m e t r y  of the flux of diffusing H 2 molecules  as follows: 

~ = ( l  + ~2) ~ = Q.,v -~ ( l  + ~).~' (5.8)  

The remaining quantities in (5.7) a re  

b, ~ t ~- M ' I ~- ~.z ' al b~ -- 1 ' 
i -~b2- -b l  

a.z = b ~ -  l , aa = bz - -  l 

(5.9) 

The charac te r i s t i c  resul t  of calculat ion in accordance with (5.7) is shown in Fig. 1. Along the axes 
we have plotted ~g0 and W/C (C is constant) and for simplici ty we have taken the limiting case  ~ 1 ~ ~ ; 
physical ly it means that the react ion of formation of active molecules  (5.4) is completed within the inflame 
front ."  Here,  12 is a var iable  pa rame te r  and, for  cu rves  1 and 2, takes the values 1 and 4. These two 
curves  co r re spond  to the case  when there  is no angular a s y m m e t r y  in the distr ibution of the diffusing 
par t ic les ,  i.e., xgo =x for them. For  curve 3, as for curve  1, ~2 =1, but the assumption of a symmet r i c  dis-  
tr ibution of the par t ic les  with respec t  to ~o has been lifted and it has been assumed that the injector of H~ 
molecules is shifted with respec t  to the axis of the sys tem in the radial  direct ion through a radial  distance 
R/4.  Accordingly,  the scale along the absc i ssa  has been deformed,  i.e., here x ~o ~ x. 

It is evident f rom a compar i son  of the curves  that the output power of the l ase r  can be appreciably 
improved by the superposi t ioa of the relaxation modes when the react ing molecules  are  injected a s y m -  
metr ical ly .  This method of optimizing diffusion-type lasers ,  which is formal ly  equivalent to increasing 
the gain for t ransi t ions  of the P - b r a n c h  of induced electrodipole radiation, evidently warran ts  fur ther  study. 

I thank R. I. Soloukhin for discussions.  
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